Эндоплазматическая сеть ретикулум

Эндоплазматическая сеть ретикулум

ЭНДОПЛАЗМАТИЧЕСКИЙ РЕТИКУЛУМ (греческий endon внутри + plasma вылепленное, оформленное; латинский reticulum сетка; синоним эндоплазматическая сеть) — органоид эукариотических клеток. Образован мембранами толщиной около 7 нм, которые формируют в цитоплазме (см.) сложную систему канальцев, вакуолей и цистерн. Размеры межмембранных полостей эндоплазматические ретикулумы варьируют от 50 нм (канальцы) до 500 нм и более (цистерны); диаметр расширенных цистерн может достигать нескольких микрометров. Мембраны и полости эндоплазматического ретикулума связаны с пери-нуклеарным пространством, комплексом Гольджи и плазматической мембраной (см. Клетка). Разделение цитоплазмы мембранами эндоплазматического ретикулума на отдельные отсеки (компартменты) имеет большое значение для пространственной организации процессов клеточного метаболизма.

Эндоплазматический ретикулум открыт в 1945 году Портером (К. R. Porter) и сотрудниками.

Существует два типа эндоплазматического ретикулума — гранулярный (шероховатый) и агранулярный (гладкий). Мембраны гранулярного эндоплазматического ретикулума несут на обращенной в гиалоплазму поверхности большое количество рибосом (см.). Мембраны агранулярного эндоплазматического ретикулума не несут рибосом и формируют в цитоплазме главным образом трубочки, анастомозирующие между собой. Агранулярный эндоплазматический ретикулум местами непосредственно переходит в гранулярный. Как правило, в каждой клетке имеются оба вида эндоплазматического ретикулума , хотя количественные соотношения между ними варьируют. В клетках, активно синтезирующих и секретирующих белки, доминирует гранулярный эндоплазматический ретикулум , видимый в световой микроскоп как базофильная зона цитоплазмы. Таким зонам еще в 19 веке приписывали важную роль в процессах биосинтеза. Их совокупность в клетке называется эргастоплазмой. Агранулярный эндоплазматический ретикулум хорошо развит в клетках, синтезирующих и секретирующих гликоген, липиды, липопротеиды, стероидные гормоны. В малодифференцированных клетках эндоплазматического ретикулума развит слабо. В эритроцитах эндоплазматический ретикулум отсутствует.

На рибосомах гранулярного эндоплазматического ретикулума синтезируются главным образом секреторные белки (см. Трансляция). При синтезе таких белков на рибосоме первоначально формируется так наз. сигнальный пептид, удерживающий рибосому на мембране эндоплазматического ретикулума . Растущий полипептид проникает через мембрану в полость эндоплазматического ретикулума , где с помощью ряда ферментов он подвергается дальнейшим модификациям. Синтезированные белки накапливаются в цистернах эндоплазматического ретикулума . От цистерн эндоплазматического ретикулума отделяются пузырьки, которые переносят эти белки в комплекс Гольджи, обеспечивающий секрецию белков из клетки (см. Гольджи комплекс).

Второй важнейшей функцией гранулярного эндоплазматического ретикулума являются биосинтез компонентов и сборка мембран самого эндоплазматического ретикулума (агранулярного и гранулярного), комплекса Гольджи, секреторных вакуолей, лизосом (см.) и плазматической мембраны. Белки мембран синтезируются на рибосомах Э. р. и встраиваются в мембраны, не проходя в полости эндоплазматического ретикулума . Липидный компонент также синтезируется на цитоплазматической («внешней») стороне эндоплазматического ретикулума , где локализуются ферменты синтеза фосфолипидов, и сразу же встраивается в мембрану. В зависимости от того, какие белки и фосфолипиды составляют синтезированный участок мембраны, он становится компонентом того или иного органоида клетки или ее плазматической мембраны.

Агранулярный эндоплазматический ретикулум участвует в синтезе и депонировании гликогена гиалоплазмы, в синтезе липидов, триглицеридов и др. Агранулярный эндоплазматический ретикулум гепатоцитов осуществляет детоксикацию ряда вредных для организма веществ, а агранулярный эндоплазматический ретикулум поперечнополосатых мышц (сарко-плазматический ретикулум) представляет собой депо внутриклеточного кальция. Освобождение и последующее связывание ионов кальция мембранами ретикулума играют важную роль в процессах сокращения и расслабления мышечного волокна. В клетках слизистой оболочки желудка агранулярный эндоплазматический ретикулум участвует в накоплении ионов хлора, необходимых для синтеза соляной кислоты.

При повреждении и гибели клеток в результате патологических процессов (например, поражение мотонейронов спинного мозга при полиомиелите, поражение клеток печени вследствие различных интоксикаций) или в ходе естественного старения 1 клеток происходит утрата рибосом, прогрессирующая фрагментация, дезинтеграция и лизис гранулярного эндоплазматического ретикулума гиперфункция эндокринных желез (например, тиреотоксикоз) сопровождается расширением цистерн, редупликацией, фрагментацией и везикуляцией агранулярного эндоплазматического ретикулума клеток соответствующей железы.

Библиогр.: А в ц ы н А. П. и Ш а хл а м о в В. А. Ультраструктурные основы патологии клетки, с. 85, М., 1979; 3 а-варзин А. А. и X а р а з о в а А. Д. Основы общей цитологии, с. 127, Д., 1982; Зенгбуш П. Молекулярная и клеточная биология, пер. с нем., т. 2, с. 252, М., 1982; Хэм А. и Кормак Д.,Гистология, пер. с англ., т. 1, с. 183, М., 1982; Ченцов Ю. С. Общая цитология, с. 188, М., 1984. Я. Е. Хесин.

Строение цитоплазмы в настоящее время изучают на молекулярном уровне. Благодаря электронному микроскопу было подтверждено ранее высказанное предположение о существовании сетчатой структуры цитоплазмы в виде особого цитоскелета. Это универсальное для всех животных и растительных клеток субмикроскопическое строение цитоплазмы получило название эндоплазматической сети, или эндоплазматического ретикулума.

Итак, эндоплазматическая сеть представляет систему внутриклеточных канальцев, вакуолей, цистерн, ограниченных цитоплазматическими мембранами, соединенных анастомозами и пронизывающих цитоплазму клетки. Пространства эндоплазматической сети заполнены материалом разной прозрачности, по электронной плотности отличающимся от окружающей цитоплазмы. Различают два типа эндоплазматической сети: гранулярную и гладкую (агранулярную).

Гранулярная эндоплазматическая сеть, раньше называемая эргастоплазмой, является одним из компонентов сложной внутриклеточной системы, участвующей в синтезе белка.

Гладкая эндоплазматическая сеть участвует в синтезе, и передвижении липидов и гликогена в клетке.

Функциональное значение эндоплазматической сети многообразно. Ее мембраны пронизывают и связывают в единое целое множество клеток. В отдельных пунктах канальцы эндоплазматической сети связаны с наружной цитоплазматической мембраной.

Аналогичная связь канальцев эндоплазматической сети с ядерной мембраной была обнаружена на животных и растительных клетках. Также были получены данные об участии канальцев эндоплазматической сети в регуляции клеточного обмена, в передаче раздражений от клетки к клетке и т.п.

Читайте также:  Чем питаются бактерии в организме человека

Комплекс Гольджи

В 1898 г. Итольянский цитолог Гольджи, используя метод серебрения, впервые обнаружил в основной цитоплазме клетки сетчатую структуру, названную им «внутриклеточным сетчатым аппаратом», впоследствии получившим название «аппарата Гольджи».

С помощью электронного микроскопа было установлено, что комплекс Гольджи состоит из трех компонентов:

1) системы уплощенных цистерн, ограниченных гладких мембран, расположенных группами и плотно прилегающих друг к другу;

2) мелких, довольно плотных пузырьков, обычно располагающихся на концах цистерн;

3) крупных вакуолей (0,2-0,3 микрона), ограниченных такими же мембранами как и цистерны.

Одна из характерных особенностей аппарата Гольджи – отсутствие рибосом, которые имеются на мембранах гранулярной эндоплазматической сети. Функции аппарата Гольджи – это участие в построении клеточной стенки и в синтезе полисахаридов.

Рибосомы – это гранулы, расположенные в гиаплазме или прикрепленные к поверхности мембран эндоплазматического ретикулума. Они обнаружены также в митохондриях и пластидах. Рибосомы состоят из белка и рибонуклеиновой кислоты (РНК) и не имеют мембранной структуры. Функция Рибосом – это синтез белка, самовоспроизводство живой материи.

Этот процесс происходит в рибосомах, расположенных группой и связанных между собой нитевидной молекулой и РНК такие группы называются Полисомами. Считают, что рибосомы формируются в ядре. Поскольку в процессе жизнедеятельности происходит постоянное обновление белков цитоплазмы и ядра, то без рибосом клетка долго существовать не может.

Сферосомы – это округлые тельца липидно-протеиновой природы. Они возникают из концевых вздутий тяжей эндоплазматической сети и богаты ферментами, необходимыми для синтеза жиров. Сферосомы лишены типичной ограничивающей мембраны.

Производные протопласта – клеточная стенка, вакуоль, эргостические вещества, физиологически активные вещества.

Физиологически активные вещества:

Ферменты (энзимы) Были открыты в 1814 г. Русским академиком Кирхгофом. Ферменты – это органические катализаторы белковой природы, они находятся во всех органеллах и компонентах клетки. В клетках растений осуществляются многочисленные обменные реакции.

Достаточно вспомнить фотосинтез, синтез и диссимиляцию таких веществ, как белки, жиры, углеводы. Все они проходят при обязательном участии ферментов. Ферменты не только направляют ход реакции, но и убыстряют ее в десятки раз.

Фитогормоны – это вещества высокой физиологической активности. Наиболее полно изучены гормоны роста. Под их влиянием убыстряется ростовые процессы: деление и рост клеток, формирование органов.

Витамины – были открыты в 1880 г. Луниным, а термин предложен позднее польским ученым Функом (1912).

Различают витамины, растворимые в воде, например В, С, РР, Н и др; они находятся в клеточном соке. Витамины растворимые в жирах: А, Д, Е, содержатся в цитоплазме. Обычно витамины локализованы в определенных органах растений.

Так витамины группы В содержаться в зародыше, в кожуре семян или молодых проростках, например ржи, пшеницы. Витамин С больше всего в плодах шиповника, лимона, черной смородины. Витамин Е – в растительных маслах, проростках пшеницы и кукурузы, в плодах цитрусовых и томатах. Витамин К – в листьях крапивы, корнеплодах моркови. Всего известно около 40 витаминов. В теле растения витамины принимают участие в обменных реакциях и находятся в химической связи с ферментами клеток.

Фитонциды и антибиотики. Это группы веществ, которые вырабатываются как клетками низших растений (антибиотики), так и высших (фитонциды). Эти вещества служат для защиты растений.

Эргостические вещества – это продукты запаса или обмена.

Углеводы – Молекула углевода содержит углерод, водород и кислород. Крахмал – соединение, часто встречающееся в качестве запасного продукта. Он образуется в процессе фотосинтеза в хлоропластах (фотосинтетический, или первичный крахмал). Затем происходит его ферментативное превращение — осахаривание, и в виде сахара (глюкозы) он транспортируется из листа на построение органов растений или в запас.

Гликоген6Н10О5)n накапливается в качестве запасного продукта преимущественно у незеленых растений (бактерий, грибы), а также у некоторых сине-зеленых водорослей. Гликоген широко распространен как запасной продукт у животных.

Инулин6Н10О5)n накапливается у некоторых видов сем. Астровые (сложноцветные): Цикория, земляной груши. Он содержится в клеточном соке в состоянии коллоидного раствора. Количество инулина в подземных органах – корнеплодах цикория – достигает – 12%. При действии спиртом инулин выпадает в виде сферокристаллов.

Жиры – жиры (жирные масла), широко распространенный запасной продукт. Встречается у водорослей, в спорах плаунов, папоротников и хвощей, а также в семенах многих голосеменных и покрытосеменных. Жирные масла отличаются высокой калорийностью.

Откладываются жиры в особых ультраструктурах – сферосомах, дислоцированных в цитоплазме. Чаще всего жиры накапливаются в семенах, иногда в плодах (маслина). Жиры хорошо растворяются в эфире, бензоле, толуоле, ксилоле, бензине. В спирте растворяются плохо, в воде нерастворимы.

Белки – Растения, как и животные, содержат много разнообразных белков. Одни группы белков составляют основную часть цитоплазмы – конституционные белки. Другие белки — ферменты – направляют ход всех жизненных процессов, т.е. химических превращений. Особую группу составляют запасные белки.

Молекула белка состоит из аминокислот. Из почти 150 известных в природе аминокислот лишь 22 входят в состав белков. Их чередование в молекуле белка определяет его бесконечное разнообразие. Каждый вид растения имеет свой набор белков специфического строения.

Запасные белки, как и углеводы, являются вторичными продуктами ассимиляции. (Участие в процессах обмена веществ называется ассимиляция и диссимиляция). Это обычные простые белки — протеины, построенные из остатков аминокислот.

Читайте также:  Крупозной пневмонии клиника

Наиболее распространены алейроновые (протеиновые) зерна, которые образуются вследствие высыхания вакуолей, выпадения в осадок белка и его кристаллизации.

Это, однако, обратимый процесс, ибо при прорастании семени, когда оно обогащается водой и появляется клеточный сок, алейроновые зерна вновь превращаются в вакуоли.

Алейроновые зерна каждого вида растения сохраняют определенную структуру и, подобно зернам крахмала, служат надежным видовым признаком. Физиологически активные вещества – ферменты (энзимы), фитогармоны, фитонциды (у высших) антибиотики (у низших). Витамины (создаются растениями). Поливитамины: А, В, В1, 12-6, С, Д, РР, Е, К.

гистология клетка растение гриб

Лекция 2. Тема: Гистология и органография растений

Рассмотрены следующие вопросы:

1) Понятие о тканях

3) Органы растений и их строение и функции

Меристематические ткани

Первичная и вторичная меристема. Первичная меристема возникает в самом начале развития организма. Оплодотворенная яйцеклетка делится и образует зародыш, который состоит из первичной меристемы, вторичная возникает, как правило, позднее из первичной или из уже дифференцированных тканей. Из первичной меристемы образуются первичные ткани, из вторичной – вторичные.

По месту расположения различают четыре вида меристем:

Верхушечная (апикальная) меристема. Находится на верхушках главных и боковых осей стебля и корня. Она определяет главным образом рост органов в длину.

По происхождению она первичная. На верхушке стебля расположена небольшая группа паренхимных клеток (реже одна клетка), которые довольно быстро делятся.

Это инициальные клетки. Ниже лежат производные инциальных клеток, деление которых происходит реже. А еще ниже в меристеме обосабливаются три группы клеток, из которых дифференцируются ткани первичного тела: протодерма – поверхностный слой клеток, дающий начало покровной ткани; прокамбий – удлиненные клетки меристемы с заостренными концами, расположенные вдоль вертикальной оси группами, из них образуются проводящие и механические ткани и вторичная меристема (камбий).

Верхушечная меристема корня имеет немного другое строение. На верхушке располагаются инициальные клетки, дающие начало трем слоям: дерматогену, дифференцирующемуся в эпиблему; периблеме, дающей начало тканям первичной коры; плероме, дифференцирующейся в ткани центрального цилиндра.

Боковая (латеральная) меристема – камбий. Располагается цилиндром вдоль осевых органов параллельно их поверхности. Обычно она вторичная. Обуславливает разрастание органов в толщину. Чаще ее называют камбием.

Вставочная (интеркалярная) меристема.

Закладывается у основания междоузлий побегов, листьев, цветоножек и других органов. Это первичная или вторичная меристема, она определяет рост органов в длину.

Раневая (травматическая) меристема. Возникает на любом участке тела растения, где нанесена травма. По происхождению она вторичная.

Покровные ткани

Главная функция – защита растений от высыхания и других неблагоприятных воздействий внешней среды. В зависимости от происхождения различают три группы покровных тканей: эпидерму, пробку, корку.

Эпидерма – Первичная покровная ткань, которая образуется из протодермы, покрывает листья и молодые стебли. Чаще всего эпидерма состоит из одного ряда живых, плотно сомкнутых клеток. Защитная функция эпидермы усиливается выростами ее клеток (трихомами) – волосками разнообразного строения.

В эпидерме имеются особые образования для газообмена и транспирации – устьичные аппараты, состоящие из двух замыкающих клеток и межклетника между ними, который называется устьичной щелью.

Устьичные аппараты у наземных растений расположены преимущественно на нижней стороне листовой пластинки, а у плавающих листьев водяных растений — только на верхней стороне.

Пробка – (перидерма). Клетки эпидермы вследствие роста стебля в толщину деформируются и отмирают. К этому времени появляется вторичная покровная ткань – пробка. Ее образование связано с деятельностью вторичной меристемы – пробкового камбия (феллогена). В общем, перидерма – это комплекс, состоящий из трех тканей: феллогена – пробкового камбия, феллемы – собственно пробки и феллодермы – пробковой паренхимы.

Пробка состоит из правильных радиальных рядов плотно расположенных клеток, стенки которых опробковели. В результате опробковения стенок содержимое клеток феллемы (отмирает). Остается слой мертвых клеток без межклетников, который не пропускает ни воду, ни газы. Этот слой надежно защищает органы растения от излишнего испарения и неблагоприятных внешних воздействий.

Для транспирации и газообмена в пробке имеются особые образования – чечевички, заполненные округлыми клетками, между которыми имеются большие межклетники. Сверху они имеют вид небольших бугорков с трещиной посередине.

Корка (ритидом). Корка образуется на смену пробке, поэтому ее иногда называют третичной покровной тканью. В типичных случаях корка встречается у деревьев.

Изолированные от центрального цилиндра отмершие слои тканей уплотняются, деформируются и образуют корку. Таким образом, корка представляет целый комплекс разнородных, сильно деформированных мертвых тканей.

Строение эндоплазматической сети

Эндоплазматическая сеть или ЭПС — это совокупность мембран, относительно равномерно распределенная по цитоплазме клеток эукариот. ЭПС имеет огромное количество разветвлений и представляет собой сложно структурированную систему взаимосвязей.

ЭПС является одной из составляющих клеточной мембраны. Сама же она включается в себя каналы, трубочки и цистерны, позволяющие распределить внутреннее пространство клетки на определенные участки, а также значительно расширить ее. Все место внутри клетки заполняет матрикс — плотное синтезированное вещество, и каждый из его участков имеет разный химический состав. Поэтому в полости клетки может идти сразу несколько химических реакций, охватывающих только определенную область, а не всю систему. Заканчивается ЭПС перинуклеарным пространством.

Липиды и белки — основные вещества в составе мембраны эндоплазматической сети. Нередко встречаются еще и различные ферменты.

  • Агранулярная (аПС) — по сути своей — система скрепленных трубочек, не содержащая рибосом. Поверхность такой ЭПС, из-за отсутствия на ней чего-либо, гладкая.
  • Гранулярная (грЭС) — такая же, как и предыдущая, но имеет на поверхности рибосомы, благодаря чему наблюдаются шероховатости.
Читайте также:  Вазомоторный ринит что это такое у детей

В некоторых случаях в этот список включают транзиторную эндоплазматическую сеть (тЭС). Второе ее название — переходящая. Она находится в зоне стыка двух видов сети.

Шероховатая ЭС может наблюдаться внутри всех живых клеток, исключая сперматозоиды. Однако, в каждом организме она развита в разной степени.

Так, например, грЭС достаточно высокоразвита в плазматических клетках, вырабатывающих иммуноглобулины, в фибробластах, продуцентах коллагена, и в железистых эпителиальных клетках. Последние находятся в поджелудочной железе, где синтезируют ферменты, и в печени, производя альбумины.

Гладкая ЭС представлена клетками надпочечников, которые, как известно, создают гормоны. Также ее можно обнаружить в мышцах, где проходит обмен кальция, и в фундальных желудочных железах, выделяющих хлор.

Также существует два вида внутренних мембран ЭПС. Первый являет собой систему трубочек с многочисленными разветвлениями, они насыщены разнообразными ферментами. Второй тип — везикулы — небольшие пузырьки с собственной мембраной. Они выполняют транспортную функцию для синтезируемых веществ.

Функции ЭПС

В первую очередь эндоплазматическая сеть — синтезирующая система. Но также она не реже занимается транспортом цитоплазматических соединений, что делает всю клетку способной на более сложные функциональные особенности.

Вышеописанные возможности ЭПС свойственны для любого из ее типов. Таким образом, эта органелла — универсальная система.

Общие функции для гранулярной и агранулярной сети:

  • Синтезирующая — выработка мембранных жиров (липидов) с помощью ферментов. Именно они позволяют ЭПС самостоятельно воспроизводиться.
  • Структурирующая — организация областей цитоплазмы и предотвращение попадания в нее ненужных веществ.
  • Проводящая — возникновение возбуждающих импульсов за счет реакции между мембранами.
  • Транспортная — выведение веществ даже сквозь мембранные стенки.

Помимо основных особенностей, каждый род эндоплазматических сетей обладает собственными специфическими функциями.

Функции гладкой (агранулярной) эндоплазматической сети

АЭС, не считая особенностей, свойственных для всех типов ЭПС, обладает собственными следующими функциями:

  • Детоксикационнная — ликвидация токсинов как внутри, так и снаружи клетки.

Фенобарбитал разрушается в клетках почек, а именно, в гепатоцитах, вследствие воздействия ферментов оксидазы.

  • Синтезирующая — выработка гормонов и холестерина. Последний выводится в нескольких местах сразу: половые железы, почки, печень и надпочечники. А в кишечнике синтезируются жиры (липиды), попадающие в кровь через лимфу.

АЭС способствует синтезу гликогена в печени, благодаря действию ферментов.

  • Транспортная — саркоплазматический ретикулум, он же специальная ЭПС в поперечно-полосатых мышцах, служит местом хранения кальций-ионов. А благодаря специализированным кальциевым помпам, он выбрасывает кальций прямо в цитоплазму, откуда моментально отправляет его в область каналов. Занимается мышечная ЭПС этим, вследствие изменения количества кальция особыми механизмами. Они находятся, в основном, в клетках сердца, скелетных мышц, а также в нейронах и яйцеклетке.

Функции шероховатой (гранулярной) эндоплазматической сети

Также, как и агранулярная, грЭС имеет свойственные только для себя самой функции:

  • Транспортная — перемещение веществ по внутримембранной секции, так, например, выработанные белки по поверхности ЭПС переходят в комплекс Гольджи, после чего выходят из клетки.
  • Синтезирующая — все, как и раньше: производство белков. Но начинается оно на свободных полисомах, и только после этого вещества связываются с ЭПС.
  • Благодаря гранулярной эндоплазматической сети синтезируются буквально все виды белков: секреторные, выходящие внутрь самой клетки, специфические во внутренней фазе органоидов, а также все вещества в мембране клетки, за исключением митохондрий, хлоропластов и некоторых типов белков.
  • Образующая — комплекс Гольджи создается в том числе благодаря грЭС.
  • Модификационная — включает в себя фосфориллирование, сульфатирование и гидроксилирование белков. Специальный фермент гликозилтранфераза обеспечивает проведение процесса гликозилирования. В основном он предшествует транспорту веществ к выходу из цитоплазмы либо происходит перед секрецией клетки.

Можно проследить, что функции грЭС направлены в основном на регуляцию транспорта белков, синтезирующихся на поверхности эндоплазматической сети в рибосомах. Они преобразуются в третичную структуру, скручиваясь, именно в ЭПС.

Типичное поведение белка заключается в поступлении в гранулированную ЭПС, после в аппарат Гольджи и, в конечном шаге, в выходе наружу к другим органоидам. Также он может отложиться, как запасной. Но часто, в процессе перемещения, он способен кардинально изменить состав и внешний вид: фосфориллироваться, например, или преобразоваться в гликопротеид.

Оба типа эндоплазматической сети способствуют детоксикации клеток печени, то есть выводу из нее ядовитых соединений.

ЭПС пропускает сквозь себя вещества не во всех участках, благодаря чему количество соединений в канальцах и снаружи их разная. По такому же принципу работает проницаемость внешней мембраны. Эта особенность играет определенную роль в жизнедеятельности клетки.

В клеточной цитоплазме мышц гораздо меньше кальций-ионов, чем в ее эндоплазматической сети. Следствием этого является удачное сокращение мышц, ведь именно кальций при выходе из каналов ЭПС обеспечивает этот процесс.

Образование эндоплазматической сети

Основные составляющие ЭПС — белки и липиды. Первые транспортируются из мембранных рибосом, вторые синтезируются самой эндоплазматической сетью с помощью ее ферментов. Так как гладкая ЭПС (аПС) не имеет на поверхности рибосом, а сама синтезировать белок не способна, она образуется при отбрасывании рибосом сетью гранулярного типа.

Ссылка на основную публикацию
Эмфетал во время беременности
Состав и форма выпуска Противопоказания Особые указания Рекомендации по употреблению Условия хранения Характеристика Диагнозы Рекомендуемые аналоги Торговые наименования Характеристика витамины...
Экстракт пантов благородного оленя
Фармакологическое действие Адаптогенное средство. Стимулирует центральную нервную и сердечно-сосудистую системы, повышает тонус скелетных мышц, двигательную активность кишечника. Содержит фосфолипиды и...
Экстракт пустырника в таблетках витамин б6
«Пустырника экстракт 14 мг + В6» — это БАД к пище, рекомендуемая в качестве дополнительного источника витамина В6. Рекомендации по...
Эналаприл как принимать до еды или после еды
ИНСТРУКЦИЯ по медицинскому применению препарата ЭНАМ® (Enam) Регистрационный номер: П N014189/01 Торговое название препарата: Энам® Международное непатентованное название препарата: эналаприл....
Adblock detector